Ki Joon Jeon and Kee-Jung Lee*
Organic Synthesis Laboratory, Department of Chemical Engineering
Hanyang University, Seoul 133-791, Korea
Fax +82 (2)22984101; E-mail: leekj@hanyang.ac.kr Received August 14, 2007

Het $=$ 2-thienyl, 3- thienyl and 3-furyl
X $=1$ and H

Abstract

Treatment of methyl propiolate and 2-(thiophen-2-yl)benzaldehyde, 2-(thiophen-3-yl)benzaldehyde or 2-(furan-3-yl)benzaldehyde with tetrabutylammonium iodide/zirconium (IV) chloride or treatment of methyl acrylate and the same aldehydes with 1,4-diazabicyclo[2,2,2]octane and triethanolamine induce an aldoltype reaction to furnish Baylis-Hillman adducts β-iodo- α-(hydroxymethyl)acrylates or α-(hydroxymethyl)acrylates, respectively. These can be used for the preparation of indenothiophenes and indenofurans having acrylic acid unit by intramolecular Friedel-Crafts reaction with sulfuric acid in tetrachloromethane.

J. Heterocyclic Chem., 45, 615 (2008).

The Baylis-Hillman (BH) reaction has become a powerful tool for construction of carbon-carbon bonds in organic chemistry because it is completely atom economical and provides densely functionalized structural units, which have been successfully employed in a variety of interesting organic transformations [1]. The FriedelCrafts reaction is one of the most fundamental carboncarbon bond forming reaction in organic synthesis [2]. Recently, we reported the synthesis of 2-(9-fluorenyl)acrylic acid derivatives from BH adducts of 2biphenylcarboxaldehydes by an intramolecular FriedelCrafts reaction as shown in Scheme 1 [3]. During continued efforts to develop BH chemistry [4], we subsequently envisioned that application of this protocol to BH adducts of several thiophene- or furan-substituted benzaldehydes might lead to indenothiophenes or indenofurans having acrylic acid unit.

Scheme 1

Indenothiophene derivatives have received considerable attention in the field of organometallic chemistry because their transition metal complexes have been found to be promising catalysts for olefin polymerization [5-7].

Indenothiophene is the core structure of potent molecules such as inhibitors of $1 \mathrm{kk}-\beta$ phosphorylation of 1 kB [8] and neurotransmitter release enhancers useful in the treatment of cognitive disorders [9]. A general method for the synthesis of indenothiophenes is reduction of corresponding indenothiophenones. The most useful syntheses of indenothiophenones include Friedel-Crafts ring closures of 2-thienylbenzoic acids and derivatives [10], cycloaromatization of non-conjugated thienyl tetraynes [11], palladium-catalyzed cyclocarbonylation of o-haloheteroaryls [12], and direct double metalation of the appropriate 3-phenylhetarene with butyllithium followed by treatment of the resulting dilithium compound with ethyl N, N-dimethylcarbamate [13]. However, far less attention has been devoted to indenofurans synthesis in the literature to date [12-14].
The required β-iodo- BH adducts $\mathbf{2 a}, 2 \mathbf{c}, \mathbf{2 e}$ were prepared by the reaction of methyl propiolate with tetrabutylammonium iodide, followed by an aldol process with aldehydes 1a-c in the presence of zirconium (IV) chloride in $62-68 \%$ yields, originally reported by Taniguchi [15] and Lu [16]. The typical BH reaction of 1a-c with methyl acrylate, 1,4-diazabicyclo[2,2,2] octane (DABCO), and triethanolamine without solvent gave BH adducts $\mathbf{2 b}, \mathbf{2 d}$, $\mathbf{2 f}$ in $61-75 \%$ yields. On Friedel-Crafts cyclization of $\mathbf{2 a} \mathbf{- 2 f}$ with 95% sulfuric acid in tetrachloromethane at room temperature for 2-5 hours, 4 H -indeno-[1,2-b]thiophenes 3a, 3b, 8 H -Indeno[2,1-b]thiophenes $\mathbf{3 c}$, $\mathbf{3 d}$ or 8 H -Indeno[2,1-b]furans $\mathbf{3 e}, \mathbf{3 f}$ were produced in 38$71 \%$ yields, respectively, presumably through the

Scheme 2

resonance-stabilized, more stable benzylic carbocation (Scheme 2).

The structures of $\mathbf{3 a}, \mathbf{3 c}, \mathbf{3 e}$ were elucidated by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and elemental analyses. In the ${ }^{1} \mathrm{H}$ NMR spectra, the characteristic chemical shift of the methine protons of indene were found at $\delta=4.85-5.04$ as a singlet and the alkenic protons were observed at $\delta=6.91-7.06$ as a doublet ($J=0.9 \mathrm{~Hz}$) for indenothiophenes $\mathbf{3 a}, \mathbf{3 c}$, and at δ $=6.98$ as a singlet for indenofuran 3e. The two vinyl protons of 3b, 3d, 3f were found at $\delta=5.44-5.53$ and 6.16-6.21, and the indene methine protons were observed at $\delta=4.87-5.03$ as singlets. The two thiophene protons of indenothiophenes 3a-3d resonated at $\delta=7.02-7.25$ and $\delta=$ 7.30-7.38 as two doublet ($J=4.9 \mathrm{~Hz}$) and one of the two furan protons of indenofurans $\mathbf{3 e}$, $\mathbf{3 f}$ was found at $\delta=$ 6.63-6.65 as a doublet ($J=1.8 \mathrm{~Hz}$) and another one was observed at aromatic region. The Z-stereoselectivity of 3a-f was determined from ${ }^{1} \mathrm{H}$ NMR analysis by comparison with the chemical shift of the olefinic protons of the known methyl (Z)-2-(9H-fluoren-9-yl)-3-iodopropenoate [3]. In the ${ }^{13} \mathrm{C}$ NMR spectra, the characteristic sp^{3} carbon atom of hetarenoindenes were observed at $\delta=$ 44.3-51.1.

In order to extend the scope of this methodology we have also examined 2-(pyridin-4-yl)benzaldehyde (1d) as
an aldehyde in this study. The corresponding β-iodo-BH adduct was not produced by the reaction of methyl propiolate with tetrabutylammonium iodide and zirconium (IV) chloride, presumably due to basic nature of the pyridine. When using excess zirconium (IV) chloride and tetrabutylammonium iodide the reaction was unsuccessful. On the other hand, the typical BH reaction of 1d with methyl acrylate, DABCO, and triethanolamine without solvent gave BH adduct $\mathbf{2 g}$ in 78% yield. However, on Friedel-Crafts cyclization of $\mathbf{2 g}$ with sulfuric

Scheme 3

acid or p-toluenesulfonic acid in tetrachloromethane or tetrahydrofuran at room or reflux temperature the desired methyl 2-(9H-indeno[2,1-c]pyridin-9-yl)propenoate (3g) was not produced, instead only decomposition was observed (Scheme 3).
In conclusion, we have demonstrated a new synthetic method for the preparation of indenothiophenes and indenofurans having acrylic acid unit by Friedel-Crafts cyclization of Baylis-Hillman adducts of hetarenobenzaldehydes. There is some limitation as regards the reactivity of Baylis-Hillman adduct having pyridine ring with sulfuric acid.

EXPERIMENTAL

Silica gel 60 (70-230 mesh ASTM) used for column chromatography was supplied by E. Merck. Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60 F_{254} TLC plates. Melting points were measured by an Electrothermal melting point apparatus and were uncorrected. Microanalysis was obtained using a Thermo Electron Corporation Flash EA 1112 element analyzer. Infrared spectra were recorded with a Nicolet Magna 550 FTIR spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Gemini 300 spectrometer using deuteriochloroform. All chemical shifts are reported in parts per million relative to tetramethylsilane. The coupling constants (J) are expressed in Hertz.

The known 2-(thiophen-2-yl)benzaldehyde (1a) [17], 2-(thio-phen-3-yl)benzaldehyde (1b) [18], 2-(furan-3-yl)benz-aldehyde (1c) [19] and 2-(pyridin-4-yl)benzaldehyde (1d) [20] were prepared from commercially available 2-formylphenyl-boronic acid with 2-bromo-, 3-bromothiophene, 3-bromofuran and 4bromopyridine by Suzuki reaction according to the literature procedure.

Methyl (Z)-2-[1-Hydroxy-1-\{2-(thiophen-2-yl)phenyl\}-methyl]-3-iodopropenoate (2a). To a mixture of $\mathbf{1 a}$ ($1.88 \mathrm{~g}, 10$ mmoles), methyl propiolate ($0.98 \mathrm{~mL}, 11 \mathrm{mmoles}$) and tetrabutylammonium iodide $\left(\mathrm{Bu}_{4} \mathrm{NI}\right)$ ($4.43 \mathrm{~g}, 12 \mathrm{mmoles}$) in anhydrous dichloromethane (40 mL) was added zirconium chloride $\left(\mathrm{ZrCl}_{4}\right)(2.80 \mathrm{~g}, 12 \mathrm{mmoles})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 hours. Then, water (20 mL) was added and the mixture was extracted with dichloromethane ($3 \times 40 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce 2.72 g (68%) of $\mathbf{2 a}$ as a solid; $\mathrm{mp} 62-63{ }^{\circ} \mathrm{C}$; ir (potassium bromide): $3485,1724,1597,1482,1447,1432 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.65$ (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (s, 3 H), 5.84 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03-7.11 (m, 3 H), 7.33-7.44 (m, 4 H), $7.50-7.53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): δ $52.0,72.2,87.7,126.1,127.0,127.1,127.3,128.3,128.7,131.4$, 133.7, 138.0, 140.9, 145.0, 166.2. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{3} \mathrm{~S}$: C, 45.01; H, 3.27; S, 8.01. Found: C, 44.87; H, 3.15; S, 7.79.

Methyl 2-[1-Hydroxy-1-\{2-(thiophen-2-yl)phenyl\}methyl] propenoate ($\mathbf{2 b}$). A mixture of $\mathbf{1 a}(1.88 \mathrm{~g}, 10 \mathrm{mmoles})$, methyl acrylate ($2.70 \mathrm{~mL}, 30 \mathrm{mmoles}$), DABCO ($1.12 \mathrm{~g}, 10$ mmoles) and triethanolamine ($0.93 \mathrm{~mL}, 8 \mathrm{mmoles}$) without solvent was stirred at room temperature for 12 days. The reaction mixture
was diluted with water (20 mL) and extracted with dichloromethane ($3 \times 40 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce 2.06 g (75%) of $\mathbf{2 b}$ as an oil; ir (potassium bromide): $3469,1727,1630,1600,1531,1483,1440 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr (deuteriochloroform): $\delta 2.84$ (br s, 1 H), 3.71 (s, 3 H), 5.67 (s, 1 H), $5.89(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.31-$ $7.43(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 52.0,69.2,125.8,126.7,127.0,127.1$ (two), 127.9, 128.4, 131.2, 133.8, 138.9, 141.3, 142.2, 166.8. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 65.67 ; \mathrm{H}, 5.14 ; \mathrm{S}, 11.69$. Found: C, 65.49; H, 5.03; S, 11.51.

Methyl (Z)-2-[1-Hydroxy-1-\{2-(thiophen-3-yl)phenyl\} methyl]-3-iodopropenoate (2c). To a mixture 1b $(1.88 \mathrm{~g}, 10$ mmoles), methyl propiolate ($0.98 \mathrm{~mL}, 11$ mmoles) and $\mathrm{Bu}_{4} \mathrm{NI}$ ($4.43 \mathrm{~g}, 12 \mathrm{mmoles}$) in anhydrous dichloromethane (40 mL) was added $\mathrm{ZrCl}_{4}(2.80 \mathrm{~g}, 12 \mathrm{mmoles})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere for 2 hours. Then, water (20 mL) was added and the mixture was extracted with dichloromethane ($3 \times 40 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce $2.48 \mathrm{~g}(62 \%)$ of $\mathbf{2 c}$ as an oil; ir (potassium bromide): 3500, 1731, 1598, 1484, $1434 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.64$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (s, 3 H), 5.71 (d, J $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.12(\mathrm{~m}, 1 \mathrm{H})$, 7.22-7.24 (m, 1 H), 7.31-7.41 (m, 4 H$), 7.46-7.50(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ nmr (deuteriochloroform): $\delta 51.9,72.5,87.1,123.2,125.6$, $126.8,128.1,128.3,128.8,130.4,136.2,137.4,140.3,145.3$, 166.3. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{3} \mathrm{~S}: \mathrm{C}, 45.01 ; \mathrm{H}, 3.27 ; \mathrm{S}, 8.01$. Found: C, 45.25 ; H, 3.03; S, 7.75 .

Methyl 2-[1-Hydroxy-1-\{2-(thiophen-3-yl)phenyl\}methyl] propenoate (2d). A mixture of $\mathbf{1 b}(1.88 \mathrm{~g}, 10 \mathrm{mmoles})$, methyl acrylate ($2.70 \mathrm{~mL}, 30 \mathrm{mmoles}$), DABCO ($1.12 \mathrm{~g}, 10 \mathrm{mmoles}$) and triethanolamine ($0.93 \mathrm{~mL}, 8$ mmoles) without solvent was stirred at room temperature for 15 days. The reaction mixture was diluted with water (20 mL) and extracted with dichloromethane $(3 \times 40 \mathrm{~mL})$. The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce $2.00 \mathrm{~g}(73 \%)$ of $\mathbf{2 d}$ as an oil; ir (potassium bromide): 3444, 1724, 1630, 1601, 1484, $1440 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.76$ (br s, 1 H), 3.70 (s, 3 H), 5.69 (s, 1 H), 5.77 ($\mathrm{s}, 1 \mathrm{H}$), $6.36(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.28(\mathrm{~m}, 1 \mathrm{H})$, 7.32-7.40 (m, 4 H), 7.49-7.52 (m, 1 H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 52.0,69.3,123.1,125.3,126.5,126.8,127.8$, 127.9, 129.0, 130.2, 136.3, 138.4, 140.7, 142.2, 166.7. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 65.67$; H, 5.14; S, 11.69. Found: C, 65.83; H, 4.89; S, 11.47.

Methyl (Z)-2-[1-\{2-(Furan-3-yl)phenyl\}-1-hydroxymethyl]-3-iodopropenoate ($\mathbf{2 e}$). To a mixture of $\mathbf{1 c}(1.72 \mathrm{~g}, 10 \mathrm{mmoles})$, methyl propiolate ($0.98 \mathrm{~mL}, 11 \mathrm{mmoles}$) and $\mathrm{Bu}_{4} \mathrm{NI}(4.43 \mathrm{~g}, 12$ mmoles) in anhydrous dichloromethane (40 mL) was added $\mathrm{ZrCl}_{4}(2.80 \mathrm{~g}, 12 \mathrm{mmoles})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ under nitrogen atmosphere for 5 hours. Then, water (20 mL) was added and the mixture was extracted with dichloromethane ($3 \times 40 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in
vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce 2.53 g (66%) of $\mathbf{2 e}$ as an oil; ir (potassium bromide): $3500,1731,1601,1505$, $1434 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.55(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1$ H), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 5.79 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.53(\mathrm{~m}, 1 \mathrm{H})$, 7.07 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.51(\mathrm{~m}, 3$ H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): δ 52.0, 72.4, 87.1, 111.7, $124.0,127.0,128.0,128.5,130.3,132.1,137.4,140.1,143.0$, 145.5, 166.4. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{4}$: C, $46.90 ; \mathrm{H}, 3.41$. Found: C, 46.67; H, 3.37.

Methyl 2-[1-\{2-(Furan-3-yl)phenyl\}-1-hydroxymethyl] propenoate (2f). A mixture of $\mathbf{1 c}(1.72 \mathrm{~g}, 10 \mathrm{mmoles})$, methyl acrylate ($2.70 \mathrm{~mL}, 30 \mathrm{mmoles}$), DABCO ($1.12 \mathrm{~g}, 10 \mathrm{mmoles}$) and triethanolamine ($0.93 \mathrm{~mL}, 8 \mathrm{mmoles}$) without solvent was stirred at room temperature for 14 days. The reaction mixture was diluted with water (20 mL) and extracted with dichloromethane $(3 \times 40 \mathrm{~mL})$. The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce $1.57 \mathrm{~g}(61 \%)$ of $\mathbf{2 f}$ as an oil; ir (potassium bromide): 3437, 1722, 1631, 1506, $1439 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.77$ (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (s, 3 H), 5.70 ($\mathrm{s}, 1$ H), $5.83(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.56-6.57(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.38$ (m, 3 H), 7.47-7.52 (m, 3 H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): δ $52.0,69.3,111.8,124.3,126.5,126.9,127.8,128.0,130.1$, $132.2,138.4,140.1,142.3,142.8$, 166.8. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$: C, 69.76; H, 5.46. Found: C, 69.55; H, 5.24.

Methyl 2-[1-Hydroxy-1-\{2-(pyridin-4-yl)phenyl\}methyl] propenoate ($\mathbf{2 g}$). A mixture of $\mathbf{1 d}(1.85 \mathrm{~g}, 10 \mathrm{mmoles})$, methyl acrylate ($2.70 \mathrm{~mL}, 30 \mathrm{mmoles}$), DABCO ($1.12 \mathrm{~g}, 10$ mmoles) and triethanolamine ($0.93 \mathrm{~mL}, 8 \mathrm{mmoles}$) without solvent was stirred at room temperature for 11 days. The reaction mixture was diluted with water (20 mL) and extracted with dichloromethane ($3 \times 40 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce $2.10 \mathrm{~g}(78 \%)$ of $\mathbf{2 g}$ as a white solid; $\mathrm{mp} 116-117{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3190, 1712, 1628, 1598, 1541, 1478, 1437, 1152, $1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.65$ (s, 3 H), 3.68 (br s, 1 H), 5.61 ($\mathrm{s}, 1 \mathrm{H}$), 5.89 ($\mathrm{s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H})$, 7.21-7.24 (m, 1 H$), 7.35-7.52(\mathrm{~m}, 5 \mathrm{H}), 8.52-8.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ nmr (deuteriochloroform): $\delta 51.9,68.7,124.4,126.1,127.1$, 128.1, 128.9, 129.6, 138.1, 138.9, 142.3, 149.0, 149.3, 166.4. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}: \mathrm{C}, 71.36 ; \mathrm{H}, 5.61 ; \mathrm{N}, 5.20$. Found: C, 71.12; H, 5.39; N, 5.07.

Methyl (Z)-2-(4H-Indeno[1,2-b]thiophen-4-yl)-3-iodopropenoate (3a). To a stirred solution of $2 \mathbf{a}(0.80 \mathrm{~g}, 2$ mmoles) in carbon tetrachloride (5 mL) was added 95% sulfuric acid (0.11 $\mathrm{mL}, 2$ mmoles) at room temperature. After 3 hour, the mixture was neutralized with saturated sodium bicarbonate solution and extracted with dichloromethane ($5 \times 10 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce $0.54 \mathrm{~g}(71 \%)$ of $\mathbf{3 a}$ as a solid; mp : 83-84 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): $1731,1605,1581,1455,1433 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 6.91$ (d, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.02 (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18-7.24 (m, 1 H), 7.32 (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34-7.39 (m, 2 H), 7.45-7.48 (m, 1 H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 50.7,52.1,85.4,119.2$,
122.4, 125.0, 125.6, 127.9 (two), 137.9, 141.5, 143.1, 146.8, 148.0, 166.8. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{IO}_{2} \mathrm{~S}: \mathrm{C}, 47.14 ; \mathrm{H}, 2.90$; S, 8.39. Found: C, 47.30 ; H, 2.78; S, 8.12.

Methyl 2-(4H-Indeno[1,2-b]thiophen-4-yl)propenoate (3b). To a stirred solution of $\mathbf{2 b}(0.55 \mathrm{~g}, 2$ mmoles) in carbon tetrachloride (5 mL) was added 95% sulfuric acid $(0.11 \mathrm{~mL}, 2$ mmoles) at room temperature. After 5 hours, the mixture was neutralized with saturated sodium bicarbonate solution and extracted with dichloromethane ($5 \times 10 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce $0.31 \mathrm{~g}(61 \%)$ of $\mathbf{3 b}$ as a solid; $\mathrm{mp} 42-43$ ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): $1723,1626,1605,1455,1438 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 5.44$ (s, 1 H), 6.16 ($\mathrm{s}, 1 \mathrm{H}$), 7.02 (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16-7.21 (m, 1 H), $7.30(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.48(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 47.1,52.2,119.0,122.7,125.0,125.2$, 125.3, 127.5 (two), 138.1, 139.0, 142.7, 148.3, 149.7, 167.4. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$: C, 70.29; H, 4.72; S, 12.51. Found: C, 69.98; H, 4.50; S, 12.29.

Methyl (Z)-2-(8H-Indeno[2,1-b]thiophen-8-yl)-3-iodopropenoate (3c). To a stirred solution of $2 \mathbf{c}(0.80 \mathrm{~g}, 2$ mmoles) in carbon tetrachloride (5 mL) was added 95% sulfuric acid (0.11 $\mathrm{mL}, 2$ mmoles) at room temperature. After 2 hours, the mixture was neutralized with saturated sodium bicarbonate solution and extracted with dichloromethane ($5 \times 10 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce 0.49 g (65%) of $\mathbf{3 c}$ as an oil; ir (potassium bromide): $1728,1606,1588,1487,1453,1436 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.90(\mathrm{~s}, 3 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 7.06$ (d, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.18-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1$ H), 7.32-7.36 (m, 2 H), 7.38 (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.50-7.53 (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 51.1,52.2,87.1,118.6$, 119.7, 125.1, 125.2, 127.9, 129.8, 138.7, 140.9, 145.6, 146.4, 147.1, 166.3. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{IO}_{2} \mathrm{~S}: \mathrm{C}, 47.14 ; \mathrm{H}, 2.90$; S, 8.39. Found: C, 47.05; H, 2.78; S, 8.17.

Methyl 2-(8H-Indeno[2,1-b]thiophen-8-yl)propenoate (3d). To a stirred solution of $\mathbf{2 d}(0.55 \mathrm{~g}, 2$ mmoles $)$ in carbon tetrachloride (5 mL) was added 95% sulfuric acid $(0.11 \mathrm{~mL}, 2$ mmoles) at room temperature. After 2 hours, the mixture was neutralized with saturated sodium bicarbonate solution and extracted with dichloromethane ($5 \times 10 \mathrm{~mL}$). The combined organic layers were dried anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce 0.32 g (64%) of $\mathbf{3 d}$ as an oil; ir (potassium bromide): $1716,1629,1607,1488,1454,1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.90$ (s, 3 H), 5.03 (s, 1 H), 5.53 (s, 1 H), $6.19(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.33$ (m, 1 H), 7.35 (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.41$ (m, 1 H), 7.51-7.54 (m, 1 H); ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(deuteriochloroform):} \delta 47.8$, $52.3,118.5,119.5,124.8,125.2,125.3,127.4,129.3,138.9$, 139.2, 146.0, 147.0, 148.3, 167.2. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}$, 70.29; H, 4.72; S, 12.51. Found: C, 70.11; H, 4.50; S, 12.39.

Methyl (Z)-2-(8H-Indeno[1,2-c]furan-8-yl)-3-iodopropenoate (3e). To a stirred solution of $2 \mathrm{e}(0.77 \mathrm{~g}, 2 \mathrm{mmoles})$ in carbon tetrachloride (5 mL) was added 95% sulfuric acid (0.11 $\mathrm{mL}, 2$ mmoles) at room temperature. After 4 hours, the mixture was neutralized with saturated sodium bicarbonate solution and
extracted with dichloromethane ($5 \times 10 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate ($6: 1$) to produce $0.29 \mathrm{~g}(40 \%)$ of $\mathbf{3 e}$ as an oil; ir (potassium bromide): $1728,1613,1548,1482,1451,1433 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 6.63$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.40$ (m, 3 H), 7.49-7.50 (m, 1 H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): δ 47.7, 52.2, 86.3, 105.2, 119.7, 124.8, 124.9, 127.9, 128.6, 136.4, 139.6, 144.3, 147.6, 161.5, 166.2. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{IO}_{3}: \mathrm{C}$, 49.20; H, 3.03. Found: C, 48.87; H, 2.80.

Methyl 2-(8H-Indeno[1,2-c]furan-8-yl)propenoate (3f). To a stirred solution of $\mathbf{2 f}(0.52 \mathrm{~g}$, mmoles) in carbon tetrachloride (5 mL) was added 95% sulfuric acid ($0.11 \mathrm{~mL}, 2$ mmoles) at room temperature. After 2 hours, the mixture was neutralized with saturated sodium bicarbonate solution and extracted with dichloromethane ($5 \times 10 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane/ethyl acetate (6:1) to produce 0.18 g (38%) of $\mathbf{3 f}$ as an oil; ir (potassium bromide): 1723, 1626, 1614, 1483, 1453, $1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 3.85$ (s, 3 H), 4.87 ($\mathrm{s}, 1 \mathrm{H}$), 5.45 ($\mathrm{s}, 1 \mathrm{H}$), 6.21 (s , 1 H), 6.65 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.10-7.15 (m, 1 H$), 7.28-7.40$ $(\mathrm{m}, 3 \mathrm{H}), 7.49-7.50(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): δ $44.3,52.2,105.1,119.4,124.6,124.9,125.9,127.4,128.2$, 136.5, 137.4, 146.0, 147.1, 163.0, 166.9. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}: \mathrm{C}, 74.99 ; \mathrm{H}, 5.03$. Found: C, 74.82; H, 4.78.

Acknowledgement. This work was supported by the Research Fund of Hanyang University (HY-2007-I).

REFERENCES AND NOTES

* Author to whom correspondence should be addressed.
[1] For reviews of the Baylis-Hillman reaction, see: [a] Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653. [b] Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001. [c] Ciganek, E. Org. React. 1997, 51, 201. [d] Langer, P. Angew. Chem. Int. Ed. 2000, 39, 3049. [e] Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627. [f] Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811. [g] Kataoka, T.; Kinoshita, H. Eur. J. Org. Chem. 2005, 45.
[2] For reviews of the Friedel-Crafts reaction, see: [a] Olah, G. A. In Friedel-Crafts Chemistry, Wiley-Interscience Press, New York, 1973. [b] Roberts, R. M.; Khalaf, A. A. In Friedel-Crafts Alkylation Chemistry, A Century of Discovery, Dekker Press, New York, 1984. [c] Heaney, H. In Comprehensive Organic Synthesis, Vol. 2, Trost, B. M.;

Fleming, I. Eds, Pergamon Press, Oxford, 1991, p 733. [d] Smith, M. B. Organic synthesis, McGraw-Hill Press, New York, 1994, 1313.
[3] Lim, H. N.; Ji, S. -H.; Lee, K. -J. Synthesis 2007, 2454.
[4a] Song, Y. S.; Lee, C. H.; Lee, K. -J. J. Heterocycl. Chem. 2003, 40, 939. [b] Lee, C. H.; Song, Y. S.; Cho, H. I.; Yang, J. W.; Lee, K. -J. J. Heterocycl. Chem. 2003, 40, 1103. [c] Ko, S. H.; Lee, K. -J. J. Heterocycl. Chem. 2004, 41, 613. [d] Lee, C. H.; Lee, K. -J. Synthesis 2004, 1941. [e] Hong, W. P.; Lee, K. -J. Synthesis 2005, 33. [f] Hong, W. P.; Lee, K. -J. Synthesis 2006, 963. [g] Yi, H. -W.; Park, H. W.; Song, Y. S.; Lee, K. -J. Synthesis 2006, 1953.
[5] Ewen, J. A.; Elder, M. J.; Jones, R. L.; Rheingold, A. L.; Liable-Sands, L. M.; Sommer, R. D. J. Am. Chem. Soc. 2001, 123, 4763.
[6] Ryabov, A. N.; Gribkov, D. V.; Izmer, V. V.; Voskoboynikov, A. Z. Organometallics 2002, 21, 2842.
[7] Grandini, C.; Camurati, I.; Guidotti, S.; Mascellani, N.; Resconi, L.; Nifant'ev, I. E.; Kashulin, I. A.; Ivchenko, P. V.; Mercandelli, P.; Sironi, A. Organometallics 2004, 23, 344.
[8] Callahan, J.; Li, Y. H. WO Patent 2003086309; Chem. Abstr. 2004, 139, 337883.
[9] Christopher, C. A.; Wilkerson, W. W.; Earl, R. A; US Patent 5594001; Chem. Abstr. 1997, 126, 171622.
[10a] MacDowell, D. W. H.; Patrick, T. B. J. Org. Chem. 1967, 32, 2441. [b] MacDowell, D. W. H.; Jeffries, A. T. J. Org. Chem. 1970, 35, 871. [c] MacDowell, D. W. H.; Jeffries, A. T. J. Org. Chem. 1971, 36, 1053. [d] Jeffries, A. T.; Moore, K. C.; Ondeyka, D. M.; Springsteen, A. W.; MacDowell, D. W. H. J. Org. Chem. 1981, 46, 2885. [e] Guillaumel, J.; Boccara, N.; Demerseman, P. J. Heterocycl. Chem. 1990, 27, 1047. [f] Sauter, F.; Dzerovicz, A. Monatsh. Chem. 1969, 100, 913 [g] Sauter, F.; Deinhammer, W. Monatsh. Chem. 1970, 101, 544.
[11] Kawano, T.; Inai, H.; Miyawaki, K.; Ueda, I. Tetrahedron Lett. 2005, 46, 1233.
[12] Campo, M. A.; Larock, R. C. J. Org. Chem. 2002, 67, 5616.
[13] Kashulin, I. A.; Nifant'ev, I. E. J. Org. Chem. 2004, 69, 5476.
[14a] Kinder, F. R.; Padwa, A. Tetrahedron Lett. 1990, 31, 6835. [b] Padwa, A.; Kinder, F. R. J. Org. Chem. 1993, 58, 21. [c] Harrison, P. A.; Russell, R. A.; Warrener, R. N.; Paddon-Row, M. N. Tetrahedron Lett. 1977, 37, 3291. [d] Maertens, F.; Toppet, S.; Compernolle, F.; Hoornaert, G. J. Eur. J. Org. Chem. 2004, 2707. [e] Zhang, S. -W.; Sugioka, T.; Takahashi, S. J. Mol. Catal. A: Chemical 1999, 143, 211.
[15] Taniguchi, M.; Hino, T.; Kishi, Y. Tetrahedron Lett. 1986 27, 4767
[16] Zhang, C.; Lu, X. Synthesis 1996, 586.
[17] Fürstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264.
[18] Jordan, A. D.; Orsini, M. J.; Middleton, S. A.; Connolly, P. J.; Brenneman, D. E.; Pan, K.; Reitz, A. B. Medicinal Chemistry 2005, 1,601.
[19] Zhao, J.; Yue, D.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 5288.
[20] Xiong, Z.; Wang, N.; Dai, M.; Li, A.; Chen, J.; Yang. Z. Org. Lett. 2004, 6, 3337.

